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We develop a theory of collective spin dynamics triggered by ultrafast optical excitation of ferromagnetic
semiconductors. Using the density matrix equations of motion in the mean field approximation and including
magnetic anisotropy and hole spin dephasing effects, we predict the development of a light-induced magneti-
zation tilt during ultrashort time intervals comparable to the pulse duration. This femtosecond dynamics in the
coherent temporal regime is governed by the interband nonlinear optical polarizations and is followed by a
second temporal regime governed by the magnetic anisotropy of the Fermi sea. We interpret our numerical
results by deriving a Landau–Gilbert-like equation for the collective spin, which demonstrates an ultrafast
correction to the magnetic anisotropy effective field due to second-order coherent nonlinear optical processes.
Using the Lindblad semigroup method, we also derive a contribution to the interband polarization dephasing
determined by the Mn spin and the hole spin dephasing. Our predicted magnetization tilt and subsequent
nonlinear dynamics due to the magnetic anisotropy can be controlled by varying the optical pulse intensity,
duration, and helicity and can be observed with pump-probe magneto-optical spectroscopy.
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I. INTRODUCTION

The interaction between itinerant carrier spins and local-
ized magnetic moments leads to carrier-mediated ferromag-
netic order in a wide variety of systems, ranging from ferro-
magnetic semiconductors such as EuO, EuS, chrome spinels,
or pyrochlore1 to manganese oxides �manganites�2 and III-
Mn-V ferromagnetic semiconductors.3–5 Such materials offer
potential for novel spintronics applications.6 Their magnetic
and transport properties are intimately related and can be
controlled by varying, e.g., the carrier density, spin, and dis-
tribution.

The nonequilibrium and dynamical properties of ferro-
magnetic semiconductors and magnetically ordered systems
are currently under investigation. For terahertz spintronic
and magnetic devices, ultrafast information storage, recov-
ery, and processing are required, e.g., the development of
devices with subpicosecond readout times of the magnetic
states. This goal requires femtosecond spin manipulation and
control. The physical processes that govern the magnetiza-
tion dynamics during time scales shorter than the character-
istic response times of the magnetic system are still under
debate. During such time scales, the validity of conventional
thermodynamic concepts for describing a magnetic system
become questionable. Ultrafast pump-probe magneto-optical
spectroscopy can shed light into this fundamental problem.
In these experiments, an ultrashort pump optical pulse ex-
cites optical polarizations, nonthermal populations, and car-
rier spins, which then trigger a magnetization dynamics mea-
sured as function of time �Faraday or Kerr rotation�.7

To interpret such experiments, it is useful to distinguish
between different stages of time evolution of the photoex-
cited system. During the initial subpicosecond regime,
shorter than the dephasing times or optical pulse duration,
the dynamics of the collective magnetization is triggered by
optical polarizations and photoexcited carrier spins. The re-
sponse of the magnetic system is controlled by the nonlinear

optical excitation and conventional thermodynamic concepts
do not apply. In this initial regime, magnetic anisotropy can
play a role by affecting the photoexcited carrier spin. After
the pulse is gone, the light-induced quantum mechanical co-
herences decay and the photoexcited carriers relax by inter-
acting with the hole Fermi sea. The carrier temperature is
thus elevated above the lattice temperature within hundreds
of femtoseconds. The hole population is eventually described
by a hot Fermi-Dirac distribution, which transfers its excess
energy to the lattice within a few picoseconds. At the same
time, the magnetic axes of the system change, due to, e.g.,
the transient temperature elevation. Such quasithermal
changes in the magnetic anisotropy are due to the Fermi sea
carriers and should be contrasted to the magnetic anisotropy
contribution of the nonthermal photoexcited carriers in the
initial temporal regime. After the equilibration of the carrier
and lattice systems, their common temperature relaxes via a
slow �nanosecond� thermal diffusion process, which returns
the magnetic system to its equilibrium configuration. In this
paper, we discuss a mechanism for coherent nonthermal
magnetization manipulation and neglect all thermal effects
due to elevated carrier and spin temperatures.

Most of the ultrafast magneto-optical experiments per-
formed so far in magnetic metals, insulators, and semicon-
ductors observed magnetization dynamics that could be in-
terpreted in terms of light-induced time-dependent thermal
effects. Following the observation of Ref. 8, many works
focused on ultrafast light-induced demagnetization, which
involves the time-dependent collective magnetization ampli-
tude. The physical mechanisms that lead to quenching of the
magnetization within a picosecond or less in materials rang-
ing from transition metals to III�Mn�V semiconductors are
still under debate but are mostly believed to be triggered by
transient changes in the carrier and spin effective
temperatures.7–14 However, transient magnetic effects have
also been observed in the initial nonthermal temporal regime,
where the concept of carrier temperature is not
meaningful.9,10 Light-induced changes in the magnetization
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orientation have also been observed in both metals and semi-
conductors and mostly attributed to transient changes in the
magnetic easy axes due to temperature elevation.15–21 Such
thermal quasiequilibrium effects induce a magnetization pre-
cession with a period �100 ps.

In most of the above experiments, the observed magneti-
zation changes result from the transient temperature rise fol-
lowing optical absorption and carrier relaxation. However,
there is a limit in the magnetization speed that can arise from
incoherent processes largely based on the heating of the
magnetic system. Far more desirable is magnetization con-
trol based on coherent and nonthermal physical processes.
The femtosecond coherent temporal regime offers the most
flexibility for fast magnetization control limited only by the
optical pulse duration. Coherent manipulation of the magne-
tization was demonstrated experimentally in magnetic di-
electrics and insulators,22–24 while the interplay of coherent
excitation and spin-orbit interaction in magnetic insulators
was addressed theoretically in Refs. 25 and 26.

Compared to other magnetically ordered materials, III-
Mn-V ferromagnetic semiconductors offer certain advan-
tages and new possibilities for ultrafast magnetization con-
trol and dynamics. These advantages stem from the carrier-
induced nature of the magnetic order and the clear distinction
between localized �Mn� and itinerant �valence band hole�
spins. Static measurements have shown that III-Mn-V het-
erostructures are highly sensitive to external stimuli such as
electrical gate, currents, or light.27–30 A light-induced out-of-
plane magnetization rotation toward the direction of propa-
gation of a circularly polarized optical field perpendicular to
the ground state magnetization was reported in Refs. 31 and
32 for Ga�Mn�As epilayers. Later, ultrafast experiments in-
terpreted their findings in terms of photoexcited carrier spin33

and thermal13,14 effects �for a review, see Ref. 7�.
Recently, Wang et al.34 reported an enhancement of the

magnetization amplitude and the ferromagnetic order in
GaMnAs induced by the photoexcited hole population. This
enhancement occurs on a �100 ps time scale, following the
initial subpicosecond demagnetization14 and thermalization.
More recently, Wang et al.35 reported the first observation of
two temporal regimes of magnetization dynamics in III-
Mn-V semiconductors. The first regime lasts for a few hun-
dreds of femtoseconds and is governed by a quasiinstanta-
neous tilt of the collective magnetization in response to
optical excitation at high energies ��3.1 eV�. In this femto-
second regime, a photoinduced four-state ferromagnetic hys-
teresis was measured, which implies femtosecond detection
of magnetic memory states. This initial magnetization dy-
namics is clearly distinguished from the subsequent thermal
regime, which is governed by magnetization precession on
the 100 ps timescale around the magnetic easy axes.

The observations of Ref. 35 point out the need for a mi-
croscopic theory of collective spin dynamics in the initial
coherent regime of III�Mn�V semiconductors, which treats
the nonlinear response of the magnetization to the ultrafast
optical excitation. The theoretical prediction of a light-
induced magnetic interaction resulting in a Kondo resonance
in the nonlinear optical response and the pump-probe spectra
of doped semiconductors was reported in Ref. 36. This light-
induced many-body effect is generated by a second-order

Raman-like process and should be most pronounced in the
case of below-resonance photoexcitation in the transparency
regime, where heating effects are suppressed. Reference 37
suggested the possibility of inducing ferromagnetic order by
exciting undoped paramagnetic II-Mn-VI semiconductors
well below the optical absorption threshold. A brief descrip-
tion of a microscopic mechanism for coherent ultrafast mag-
netization dynamics in III-Mn-V ferromagnetic semiconduc-
tors was presented in Ref. 38, while Ref. 39 addressed the
subsequent incoherent regime and attributed the ultrafast de-
magnetization to the scattering of the Mn spins with spin-flip
excitations of the hot hole Fermi sea.

In this paper, we develop in detail a theory that describes
the ultrafast nonlinear response of the collective spins in fer-
romagnetic semiconductors. We present calculations for the
most basic Hamiltonian that applies to a wide range of fer-
romagnetic semiconductor systems. The magnetic exchange
interaction and the coupling to the optical field are treated
within the mean field approximation, which has been shown
to describe well the ground state and thermodynamic prop-
erties of III-Mn-V semiconductors4,5 as well as the ultrafast
nonlinear optical response of semiconductors for strong
photoexcitation.40,41 In Sec. II, we set up the problem at
hand, while in Sec. III, we derive the mean field equations of
motion in the coherent limit in the case of several coupled
valence bands. The dephasing effects due to the mixing of
the hole spin states are described in Sec. IV with the Lind-
blad semigroup method.42 This method allows us to treat
consistently both hole spin relaxation and dephasing and in-
terband polarization dephasing resulting from hole spin-flip
interactions. In Sec. V, we extract a simple one-band model
from the full theory and use it in Sec. VI to calculate the
light-induced Mn spin trajectories and discuss the role of
hole spin and interband polarization dephasing, magnetic an-
isotropy, and photoexcitation intensity and duration. Our nu-
merical results predict an ultrafast tilt of the Mn spin away
from its initial �equilibrium� value, which develops on a time
scale comparable to the optical pulse duration. The magni-
tude of this tilt is controlled by the optical pulse intensity and
duration. The direction of the tilt and overall shape of the Mn
spin trajectory depend sensitively on the hole spin dephasing
and on the interband polarizations. In Sec. VII, we interpret
the above numerical results by deriving from the full theory
an effective Landau–Gilbert-like43 equation of motion for the
Mn spin using the adiabatic following approximation. We
show that the effective magnetic anisotropy fields that gov-
ern the precession and relaxation within the above Landau–
Gilbert picture acquire a time-dependent correction deter-
mined by the optical pulse amplitude, the photoexcited
interband polarizations, and the mixing of the hole spin
states. This correction results in magnetization dynamics on
a time scale comparable to the optical pulse duration and
may be interpreted in terms of light-induced precession and
relaxation. After the pulse is gone, the Mn spin trajectory is
controlled by the magnetic anisotropies due to the Fermi sea
�thermal� carriers. If the initial magnetization response to the
optical excitation results in a sufficiently small tilt, the Mn
spin precesses around its initial configuration, with a period
determined by the zero-momentum magnon energy, as de-
scribed by linearizing the equations of motion. On the other

J. CHOVAN AND I. E. PERAKIS PHYSICAL REVIEW B 77, 085321 �2008�

085321-2



hand, for sufficiently high photoexcitation intensity, the ini-
tial light-induced magnetization tilt brings the magnetic sys-
tem sufficiently far from the magnetic energy minimum so
that nonlinear magnetic effects become important. In this
case, the Mn spin evolution differs from a simple precession.
Our theory predicts two distinct temporal regimes of magne-
tization evolution, the first of which is governed by the op-
tical excitation, while the second is governed by the mag-
netic anisotropies due to the thermal carriers. We discuss the
signatures of the above transient and nonlinear magnetic ef-
fects in ultrafast magneto-optical pump-probe spectroscopy
and end with our conclusions in Sec. VIII. The details of our
calculations are presented in the five appendixes.

II. PROBLEM SETUP

We start with the Hamiltonian4,5 H�t�=H+HL�t�, where
H=Ke+Kh+Hexch is the Hamiltonian in the absence of opti-
cal excitation and HL�t� describes the coupling of the optical
fields.

Ke = �
kn

�kn
c êkn

† êkn, Kh = �
kn

�−kn
v ĥ−kn

† ĥ−kn �1�

describe the electron and hole band energies. The conduction
band electrons are created by the operator êkn

† , where k is the
momentum and n labels different conduction bands. �kn

c is
the n-band dispersion �we set �=1�. The valence holes are

created by the operator ĥkn
† , where k is the hole momentum

and n the band index. Their dispersion �kn
v is determined by

the band structure. The Mn impurities act as acceptors,
which create a hole Fermi sea in the valence band, and also
provide randomly distributed S=5 /2 spins, S j, that are local-
ized at positions R j. These local moments interact with the
hole spin via the antiferromagnetic Kondo-like exchange in-
teraction

Hexch =
�

V
�

jkk�nn�

S j · snn�e
i�k−k��·Rjĥ−kn

† ĥ−k�n�, �2�

where s is the hole spin operator, V is the volume, and � is
the exchange constant. Finally, the coupling of the optical
pulse is described by

HL�t� = − �
nn�k

dnn��t�êkn
† ĥ−kn�

† + H.c., �3�

where dnn��t�=�nn�E�t� is the Rabi energy, E�t�
=E exp�−t2 /�p

2� is the optical �pump� pulse, with duration �p,
and �nn� is the dipole transition matrix element between the
valence band n� and the conduction band n. The optical pulse
propagates along the growth direction z, which is perpen-
dicular to the ground state spins.

The ground state, thermodynamic, and transport proper-
ties of III�Mn�V semiconductors in the metallic regime �hole
densities �1020 cm−3� are well described by treating the
magnetic exchange interaction �Eq. �2�� within the mean
field virtual crystal approximation.5 This approximation ne-
glects spatial correlations and assumes uniformly distributed
classical Mn spins, justified in the limit S→�, where S is the

Mn spin amplitude. The holes then experience an effective
magnetic field proportional to the Mn spin. The valence band
splits into two spin-polarized bands separated by the mag-
netic exchange energy �=�cS, where c is the density of the
localized Mn spins. The typical values of � observed in the
GaMnAs and InMnAs ferromagnetic semiconductors that
exhibit the highest critical temperatures are comparable to
the Fermi energy, EF�100 meV, of the ground state hole
Fermi sea.

In the ground state, the Mn spin points along the easy axis
direction in order to minimize the total energy of the Fermi
sea carriers,

Eh�S� = �
ki

Eki
h nki, �4�

where Eki
h �S� are the eigenvalues of the Hamiltonian Kh

+Hexch for a given Mn spin S and nki are the populations of
the corresponding eigenstates. In III-Mn-V semiconductors,
this mean field total energy depends strongly on the orienta-
tion of S.44,45 This anisotropy is believed to mainly arise
from the valence band structure, in particular the spin-orbit
coupling of different valence bands, which was taken into
account in Refs. 44 and 45 within the k ·p envelope function
approximation. The easy axis depends sensitively on the hole
distribution among different valence bands. The calculated
Eh�S� is well described by an expansion in terms of S.44 The
following expansion describes the static experimental
measurements:46

Eh = Kc�Ŝx
2Ŝy

2 + Ŝx
2Ŝz

2 + Ŝy
2Ŝz

2� + KuŜx
2 + KuzŜz

2, �5�

where Ŝ=S /S, Kc is the lowest cubic anisotropy constant,
and Ku and Kuz are the first order uniaxial anisotropy con-
stants, attributed to strain, whose origin is still being
debated.47 For Ku=Kuz=0, the ground state magnetization is
either parallel to the axes 	x , 	y, or 	z, if Kc
0 or points
along the diagonals �x�= �y�= �z�, if Kc�0. For the parameters
of interest in Ga�Mn�As epilayers, Kc�0, and the easy axis
direction is determined by the magnitude and sign of the
uniaxial anisotropy constants Ku and Kuz. A sufficiently large
Kuz
0 ensures that the ground state magnetization lies
within the x-y plane, as observed experimentally. The ob-
served temperature and hole concentration dependence of the
easy axis suggests that Ku
0.46 For Ku
 �Kc�, the easy axis
points along the 	y axis, while for Ku� �Kc�, it points at an
angle � from the x axis, where cos 2�=Ku / �Kc�.

Even though k ·p and mean field theory explain the main
anisotropy effects, the interpretation of the observed changes
of the in-plane easy axis with temperature and hole concen-
tration require further theoretical investigations. A complete
microscopic theory that includes the magnetic anisotropy be-
comes even more complicated in the case of ultrafast optical
excitation. As observed experimentally,35 the magnetization
responds to the photoexcitation of high energy ��3.1 eV�
valence band states, which are empty in the ground state and
lie far from the Brillouin zone center, well before carrier or
spin thermalization. In this initial highly nonequilibrium re-
gime, a fully microscopic theory must address both the va-
lence band structure at �3 eV energies and the coherent and
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nonthermal effects. Here, we address the general magnetic
semiconductor system and include the magnetic anisotropy
effects by using the Fermi sea energy expression �Eq. �5��.
The time-dependent response of the Mn spin S to the non-
linear optical excitation, discussed in the next section,
changes Eh�S�, which leads to an additional complex nonlin-
ear magnetization dynamics.

III. EQUATIONS OF MOTION

To describe the ultrafast optical and spin response, we
proceed in two steps. In this section, we derive the mean
field equations of motion, while in the next section, we de-
rive the dephasing contributions due to the hole spin-flip
interactions. The components of the density matrix �	 are
obtained from the equations of motion

i�t�	 = ���,H�t��	�HF + i�t��	�relax, �6�

where the last term describes the dephasing and relaxation
contributions. By factorizing all higher density matrices
�Hartree–Fock approximation�, which couple due to the
many-body exchange interaction, we obtain a closed system
of equations for the optical polarizations, spins, and carrier
populations and coherences.

We are interested in calculating the macroscopic magne-
tization measured in ultrafast pump-probe magneto-optical
experiments. This is dominated by the contribution of the
average Mn spin

S =
1

cV
�

i

�Si	 . �7�

From Eq. �6�, we obtain within the mean field approximation
the equation of motion that describes the magnetization dy-
namics,

�tS = S � 
H −
�

V
�
k

sk
h� , �8�

where H is a magnetic field. The right hand side �rhs� of the
above equation describes the precession of the Mn spin
around an effective time-dependent magnetic field deter-
mined by H and the mean hole spin

sk
h = �

nn�

snn��ĥ−kn
† ĥ−kn�	 , �9�

where snn� are the matrix elements of the hole spin operator
s between the valence band eigenstates. Equation �8� corre-
sponds to the Landau–Gilbert picture of magnetization
dynamics43 and conserves the amplitude of S.

The hole spin, populations, and intervalence band coher-

ences are described by the density matrices �ĥ−kn
† ĥ−kn�	,

whose equations of motion read

i�t�ĥ−kn
† ĥ−kn�	 = ��kn�

v − �kn
v ��ĥ−kn

† ĥ−kn�	

+ �c�
m�

S · �sn�m��ĥ−kn
† ĥ−km�	

− s
nm�
* �ĥ−km�

† ĥ−kn�	� + �
m�

d
m�n
* �t��ĥ−kn�êkm�	

− �
m�

dm�n��t��ĥ−knêkm�	*

+ i��t�ĥ−kn
† ĥ−kn�	�relax. �10�

The second line on the rhs of the above equation describes
the change in the hole states due to the exchange interaction.
The third line describes the excitation of hole coherences and
populations by the optical pulse, via second-order Raman
processes. Similarly, we obtain for the electron populations
and coherences,

i�t�êkn
† êkn�	 = ��kn�

c − �kn
c ��êkn

† êkn�	 + �
m�

d
nm�
* �t��ĥ−km�êkn�	

− �
m�

dn�m��t��ĥ−km�êkn	* + i��t�êkn
† êkn�	�relax.

�11�

The total carrier populations with given momentum k,

Nk
e = �

n

�êkn
† êkn	, Nk

h = �
n

�ĥ−kn
† ĥ−kn	 , �12�

are not affected by the magnetic exchange interaction, which
within the mean field approximation only changes the spin.
They satisfy equations of motion similar to the Bloch equa-
tions,

�tN−k
h = 2 Im�

nn�

d
n�n
* �t��ĥ−knêkn�	 − �N−k

h − f−k
h �/T1

h �13�

and

�tNk
e = 2 Im�

nn�

d
n�n
* �t��ĥ−knêkn�	 − Nk

e /T1
e , �14�

where T1
h and T1

e are the spin-independent population relax-
ation times, due to the carrier-carrier and carrier-phonon
scattering processes which thermalize the carrier system. The
hole population relaxes to the thermal distribution fk

h.
Using Eq. �9� for the total hole spin, we obtain from Eq.

�10� after some algebra that

�tsk
h = �cS � sk

h + Im hk�t� + i��Kh,sk
h�	 + ��tsk

h�relax.

�15�

The first term on the rhs describes the precession of the hole
spin around the mean field created by the Mn spin. The sec-
ond term describes the photoexcitation of hole spin via
second-order Raman processes, which are determined by the
transition matrix elements �selection rules� and the interband
optical polarizations,
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hk�t� = 2 �
nn�m�

d
nm�
* �t�sm�n��ĥ−kn�êkn	 . �16�

The third term on the rhs of Eq. �15� arises when the valence
band states are not eigenstates of the hole spin: �sk

h ,Kh��0.
In this case, the hole spin dynamics depends on the valence
band energies and is determined by the individual coherences
�Eq. �10�� between the different valence bands. In III-Mn-V
semiconductors, the hole spin is not conserved due to the
strong spin-orbit interaction. Recalling Eq. �8�, we conclude
that the mixing of the hole spin states and the valence band
structure modifies the effective magnetic field experienced
by the Mn spin, as described by the third term on the rhs of
Eq. �15�.

The photoexcitation of carrier spin, which triggers the
magnetization dynamics, is governed by the interband opti-
cal polarizations,

Pknn� = �ĥ−knêkn�	 , �17�

determined by the equations of motion

i�tPknn� = ��kn�
c + �kn

v − �p − i/T2�Pknn� + �cS · �
m

snmPkmn�

− dn�n�t��1 − �ĥ−kn
† ĥ−kn	 − �êkn�

† êkn�	�

+ �
m�n

dn�m�ĥ−km
† ĥ−kn	 + �

m�n�

dmn�êkm
† êkn�	

+ i�t�Pknn��relax. �18�

In the above equation, �p is the pump optical pulse central
frequency and T2 describes the spin-independent contribution
to the polarization dephasing. T2 can be quite short due to the
disorder, which relaxes the momentum conservation by in-
troducing a one-body potential. For weak disorder, this effect
can be treated by introducing a dephasing time comparable
to the momentum scattering time. The second line on the rhs
of the above equation is due to the change of the hole states
induced by the effective magnetic field �cS�t�. The third line
describes the Pauli–blocking nonlinearity �phase space
filling�,40 while the fourth line describes the contribution of
carrier coherences between the different bands. Finally, the
last line describes the spin-dependent polarization dephasing
due to the hole spin-flip interactions, discussed in the next
section. We note from the above equations that the interband
polarizations, valence band coherences, and hole states de-
pend on the effective magnetic field proportional to S�t�.
This spin can deviate significantly from its ground state con-
figuration in the case of strong photoexcitation, which in turn
changes the hole states as compared to the ground state. Such
light-induced deviations from equilibrium increase with pho-
toexcitation intensity and are described nonperturbatively by
solving numerically the above system of coupled equations
without expanding in terms of the optical field.

IV. HOLE SPIN AND POLARIZATION DEPHASING

A. Lindblad formalism

The equations derived in the previous section do not in-
clude dephasing and relaxation contributions. Within the
semiconductor Bloch equations,40 such effects are treated
phenomenologically by introducing effective dephasing and
relaxation times to the polarization and population equations
of motion. Here, we must also consider the dynamics of the
carrier and Mn spins, which within the mean field approxi-
mation precess around each other while conserving their
magnitudes. In the III-Mn-V system, the hole spin relaxation
is strong, mainly due to the spin-orbit interaction. For ex-
ample, the combination of spin-orbit coupling in the valence
band and disorder-induced scattering between momentum
states, leads to hole spin dephasing and relaxation times of
the order of tens of femtoseconds.48,49 Such times are com-
parable to the hole spin precession period around the Mn
spin and cannot be neglected.

Carrier spin relaxation is often described within the spin-
Bloch equations.49,50 However, hole spin relaxation also
leads to interband polarization dephasing, and both effects
must be treated on equal footing for our purposes here. For
this, we use the Lindblad semigroup description of dissipa-
tive quantum dynamics.42 Under the general assumptions of
linear coupling between bath and system operators and Mar-
kovian approximation, as well as density matrix positivity
and semigroup-type time evolution, the relaxation contribu-
tion to the density matrix equation of motion can be ex-
pressed in the form42

��t�relax = �� �
k�m�

�2�Lk�m�
†

Lk�m�	 − �Lk�m�
† Lk�m�	

− �Lk�m�
† Lk�m�	� , �19�

where �� is the spin dephasing rate. The Lindblad operators
Lkm must be chosen to describe the relaxation processes at
hand. In our case, the hole spin must relax toward the direc-
tion antiparallel to the Mn spin S�t�. As we show below, this
can be achieved by choosing

Lkm = ĥ−km⇓
† ĥ−km⇑, �20�

where ĥkm⇑
† �ĥkm⇓

† � creates a hole with spin parallel �antipar-
allel� to the Mn spin S�t� and the index m labels the different
basis states.

B. Hole spin dephasing and relaxation

First, we derive the hole spin dephasing and relaxation
described by the Lindblad operator �Eq. �20��. Noting that
the hole spin relaxes to a direction antiparallel to the Mn
spin, it is useful to introduce its components parallel and

perpendicular to the unit vector Ŝ,

skm
h = skm�

h + Ŝskm�
h , �21�

where skm�
h = Ŝ ·skm

h and

FEMTOSECOND CONTROL OF THE MAGNETIZATION IN… PHYSICAL REVIEW B 77, 085321 �2008�

085321-5



skm�
h = Ŝ � �skm

h � Ŝ� . �22�

As derived in Appendix A, the Lindblad operator �Eq. �20��
gives the following spin-Bloch equations:

�t�skm�
h �relax = − ��skm�

h , �23�

�t�skm�
h �relax = − ���skm�

h + mkm
h � , �24�

where �� =2�� is the spin relaxation rate and

mkm
h = Nkm

h /2 − �Nkm
h /2�2 + �skm

h �2 �25�

is the quasiequilibrium hole spin value. mh corresponds to
the maximum spin smax of Nh holes, given by the relation
smax−smax

2 =Nh /2− �Nh /2�2.

C. Spin-dependent polarization dephasing

The hole spin dephasing also dephases the interband op-
tical polarizations. To describe this, it is useful to use the
basis of hole spin eigenstates discussed above and define the
interband electron-hole amplitudes

Pkmn� = �ĥ−km�êkn	 , �26�

where �= ↑ ,↓. Using Eqs. �19� and �20�, we derive in Ap-
pendix B the following expression for the spin-dependent
polarization dephasing:

��tPkmn↑�relax

= − ��Pkmn↑
1

2
+ skm�

h +
Ŝz

2
�1 − Nkm

h � + i�Ŝ � skm
h �z�

+ Pkmn↓
 Ŝ−

2
�1 − Nkm

h � + i�Ŝ � skm
h �−�� , �27�

��tPkmn↓�relax

= − ��Pkmn↓
1

2
+ skm�

h −
Ŝz

2
�1 − Nkm

h � − i�Ŝ � skm
h �z�

+ Pkmn↑
 Ŝ+

2
�1 − Nkm

h � + i�Ŝ � skm
h �+�� , �28�

where, for any vector A, A	=Ax	 iAy. The above dephasing
contribution depends nonlinearly on the photoexcitation, via
the photoexcited hole contribution to the population Nh and
spin sh and the light-induced changes in the Mn spin S.
These nonlinearities correspond to excitation-induced
dephasing induced by hole spin-flip correlations.

V. SINGLE BAND APPROXIMATION

The general theory derived in the previous sections may
be used to treat the band structure relevant to the particular
ferromagnetic material of interest. Below, we discuss the
general features of the dynamics, their physical origin, and
their sensitivity to different parameters by extracting from
the general theory a simplified one-band model that captures
the essential physics common in all materials. We therefore

neglect band structure particularities, such as the nature of
the high energy states far from the Brillouin zone center,
excited by the �3.1 eV pump of Ref. 35, or impurity bands.
We assume that the magnetization dynamics is mainly trig-
gered by optical transitions between a single valence and
conduction band of spin-↑ and spin-↓ states, whose mixing is
described phenomenologically with the Linbdlad approach.
In the basis of carrier spin eigenstates and assuming a single
band, Eq. �3� reduces to

HL = − d+�
k

êk↓
† ĥ−k↑

† − d−�
k

êk↑
† ĥ−k↓

† + H.c., �29�

where d	�t�=�	E�t�. The Rabi energy d+ describes the cou-
pling of the right-circularly polarized component of the op-
tical field, while d− describes the coupling of the left-
circularly polarized component. The corresponding interband
transition matrix elements �	 depend on the band structure
and the admixture of spin ↑ and spin ↓ in the band states that
mostly contribute to Eq. �3� for the energies of interest. De-
noting

Pk�
+ = �ĥ−k�êk↓	, Pk�

− = �ĥ−k�êk↑	 �30�

and using Eqs. �27� and �28� and the results of Sec. III, we
obtain the following coupled equations of motion for the
interband optical polarizations:

i�tPk↑
+ − ��k + �kz�Pk↑

+ − �k−Pk↓
+ = − d+�t��1 − nk↓

e − nk↑
h � ,

�31�

i�tPk↓
+ − ��k − �kz�Pk↓

+ − �k+Pk↑
+ = d+�t�sk+

h + d−�t�sk+
e ,

�32�

i�tPk↓
− − ��k − �kz�Pk↓

− − �k+Pk↑
− = − d−�t��1 − nk↑

e − nk↓
h � ,

�33�

i�tPk↑
− − ��k + �kz�Pk↑

− − �k−Pk↓
− = d−�t�sk−

h + d+�t�sk−
e ,

�34�

where

�k = �k
v + �k

c − �p − i
 1

T2
+ ���1

2
+ sk�

h �� �35�

gives the Mn spin-independent contribution, and

�k =
Ŝ

2
��cS − i���1 − Nk

h�� + ��Ŝ � sk
h �36�

the Mn spin-dependent contribution to the e-h pair energy
and dephasing. �k also determines the coupling between the
interband polarizations, due to the mixing of the hole spins
by the magnetic exchange interaction and the dephasing. The
above e-h pair energies depend on the light-induced devia-
tions of the Mn and hole spins from their ground state con-
figurations and on the photoexcited hole populations, which
give nonlinear contributions to the optical polarization. The
rhs of Eqs. �31� and �33� describes the Pauli-blocking non-
linearities �phase space filling�,40 while the rhs of Eqs. �32�
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and �34� describes the contribution of carrier spin coher-
ences, ground state or photoexcited. The above polarization
equations of motion treat the effects of the mixing of the
spin-↑ and spin-↓ states by spin-orbit or other spin-flip inter-
actions by using Eqs. �27� and �28�.

Finally, we turn to the equations of motion for the carrier
spins. The hole spin dynamics is described by Eq. �15�.
Within the one-band approximation, the mixing of the spin-↑
and spin-↓ hole states leads to the spin dephasing derived in
Appendix A. The second term on the rhs of Eq. �15� de-
scribes the photoexcitation of hole spin as determined by the
interband polarizations and hk�t� �Eq. �16��. In the basis of
hole spin eigenstates considered in this section,

hkx�t� = d+
*�t�Pk↓

+ �t� + d−
*�t�Pk↑

− �t�

hky�t� = − i�d+
*�t�Pk↓

+ �t� − d−
*�t�Pk↑

− �t�� ,

hkz�t� = d+
*�t�Pk↑

+ �t� − d−
*�t�Pk↓

− �t� . �37�

The above equation describes a second-order nonlinear opti-
cal process where the excitation of a spin-↓ hole-spin-↓ elec-
tron pair is followed by the deexcitation of a spin-↑ hole-
spin-↓ electron pair. This second-order �Raman� process is
induced by the right-circularly polarized component of the
optical field, while the left-circularly polarized component
induces an analogous process involving the electron spin-↑
states. The above process requires a nonzero polarization
Pk↓

+ . This is possible, on the one hand, due to the coupling of
the spin-↑ and spin-↓ hole states �and hence Pk↓

+ with Pk↑
+ ,

third term on the left hand side of Eq. �32�� described by �k,
due to the magnetic exchange interaction and the hole spin
dephasing processes �e.g., spin orbit� and, on the other hand,
due to the presence of spin-↑-spin-↓ hole spin coherence in
the ground state. Finally, Eq. �37� describes the photoexcita-
tion of spin-polarized hole populations and a hole spin z
component via the excitation and subsequent deexcitation of
a spin-↑ hole and spin-↓ electron pair �right-circularly polar-
ized component� or a spin-↓ hole and spin-↑ electron pair
�left-circularly polarized component�. The above coherent
nonlinear effects occur during the optical pulse and do not
require the absorption of light. They can also be induced by
photoexciting the system below resonance, in the transpar-
ency regime, provided that the photoexcitation intensity is
sufficiently high to achieve an observable effect. Such
below-resonance photoexcitation is advantageous since un-
desirable effects such as transient heating can be suppressed
and thus the speed of a possible device can be maximized.
The equation of motion for the electron spin has a form
similar to Eq. �15�,

��t + �e
s�sk

e = Im hk
e�t� , �38�

where �e
s is the electron spin dephasing rate and hk

e describes
the photoexcitation of conduction electron spin,

hkx
e �t� = d−

*�t�Pk↓
+ �t� + d+

*�t�Pk↑
− �t� ,

hky
e �t� = i�d+

*�t�Pk↑
− �t� − d−

*�t�Pk↓
+ �t�� ,

hkz
e �t� = − �d+

*�t�Pk↑
+ �t� − d−

*�t�Pk↓
− �t�� . �39�

In the next section, we calculate the Mn spin dynamics by
solving the above system of coupled equations nonperturba-
tively, which allows us to treat large deviations of the Mn
spin from its ground state configuration induced by strong
photoexcitation.

VI. NUMERICAL RESULTS

Within the mean field approximation, light-induced Mn
spin dynamics is triggered initially by the photoexcitation of
a hole spin component perpendicular to the ground state Mn
spin. In the simple one-band approximation, the magnitude
of such a spin component is determined by the ratio d+ /d−
between the Rabi energies that describe the coupling of the
right- and left-circularly polarized components of the optical
field. This ratio is determined by the selection rules and the
nature of the bands that contribute to the magnetization dy-
namics. Within our simplified one-band model, d+ /d− also
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FIG. 1. �Color online� Mn spin trajectories without magnetic
anisotropy in the three regimes of spin and polarization dephasing
discussed in the text for three pulse durations �p and two different
Rabi energies: �a� d+�0�=20 meV and �b� d+�0�=60 meV. Thick
circled line, �p=100 fs; dashed line, �p=250 fs; thin solid line, �p
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reflects the magnetic anisotropy of the system due to the
band structure. In the absence of a complete theoretical un-
derstanding of such band structure effects, especially for the
high energy ��3.1 eV� transitions observed experimentally
to trigger ultrafast magnetization dynamics in Ga�Mn�As,35

we consider here the extreme case of d−=0, which corre-
sponds to right-circularly polarized light. For all the calcula-
tions presented in this paper, we consider a magnetic ex-
change energy �cS=125 meV comparable to the Fermi
energy EF=100 meV, fraction of initial holes 0.33 of the Mn
impurities, a hole mass mh=7.15me, and a carrier thermali-
zation time T1=165 fs. Our results are not very sensitive to
the above parameters, with the exception of the exchange
interaction � that changes the magnitude of the effect. To
make the connection between the calculated quantities and
the experiment, we note that ultrafast magneto-optical pump-
probe spectroscopy can be used to deduce the time evolution

of the z component of the magnetization, �Sz�t�.7,35

We start with our results in the absence of magnetic an-
isotropy. Figure 1 shows the light-induced time evolution of
the Mn spin and its dependence on the hole spin and polar-
ization dephasing, the Rabi energy, and the optical pulse du-
ration. By comparing three different dephasing regimes in
Fig. 1, one can see that the shape of the Mn spin trajectory
depends sensitively on the hole spin and polarization dephas-
ing. Regime 1 corresponds to very short dephasing times,
1 /��=21 fs and T2=10.5 fs, which are typical in III�Mn�V
semiconductors.48 Regime 2 corresponds to T2=330 fs with
very short hole spin dephasing 1 /��=21 fs. Finally, regime
3 neglects the spin dephasing altogether, ��=0, T2=330 fs,
which assumes that the hole spin is a good quantum number.
As can be seen in Fig. 1, the dephasing changes qualitatively
the shape of the Mn spin trajectory, from the precession
within the x-y plane expected in the absence of magnetic
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anisotropy to a complex magnetization tilt out of the x-y
plane, in the direction of pulse propagation. The magnitude
of this out-of-plane tilt and the Mn spin z component are
enhanced by increasing �� or the pulse duration �p and by
the short T2. Furthermore, the Mn spin component within the
x-y plane rotates in a clockwise direction, opposite to the
counterclockwise direction expected for an effective mag-
netic field along the +z axis of pulse propagation. For right-
circular polarization, the latter is the expected direction of
the photoexcited hole spin in the absence of magnetic ex-
change interaction or spin dephasing. However, our numeri-
cal results show that the photoexcited hole spin z component
is, in fact, negative, due to the magnetic exchange interaction
and the mixing of the hole spin states. The dependence of the
trajectories in Fig. 1 on the pulse duration shows that the
light-induced Mn spin dynamics terminates soon after the
end the photoexcitation, as expected in the absence of mag-
netic anisotropy. Furthermore, the magnitude of the Mn spin

tilt increases with photoexcitation intensity. The spin dynam-
ics of Fig. 1 describes the fundamental response of the spin
system to the optical excitation within the mean field ap-
proximation.

The Mn spin response is seen more clearly in Fig. 2,
which shows the development with time of the y and z com-
ponents of S. Both of these components vanish in the ground
state. They develop on a time scale determined by the pulse
duration and have comparable magnitudes for sufficiently
large ��. The importance of the hole spin dephasing can be
seen by comparing Fig. 2, obtained for very short spin and
polarization dephasing times, with Fig. 3, obtained for ��

=0. The most striking difference is the very small magnitude
of the out-of-plane component Sz�t� when the hole spin is
conserved ���=0�. The hole spin follows the overall Mn
spin and remains more or less antiparallel to S�t� at all times,
with the exception of a small component perpendicular to S
that triggers the spin dynamics.

-1000 -500 0 500 1000

-0.2

-0.1

0

-1000 -500 0 500 1000

-1.2

-0.8

-0.4

0

-1000 -500 0 500 1000

-0.2

-0.1

0

-1000 -500 0 500 1000

-1.2

-0.8

-0.4

0

-1000 -500 0 500 1000

-0.2

-0.1

0

-1000 -500 0 500 1000

-1.2

-0.8

-0.4

0

pτ =500 fs

pτ =250 fs

pτ =100 fs pτ =100 fs

pτ =250 fs

pτ =500 fs

(a) (b)

time (fs)time (fs)

M
n−

sp
in

co
m

po
ne

nt
s

FIG. 3. �Color online� Time evolution of Mn spin components for the parameters of Fig. 2 except for ��=0 and T2=330 fs.

FEMTOSECOND CONTROL OF THE MAGNETIZATION IN… PHYSICAL REVIEW B 77, 085321 �2008�

085321-9



We now turn to the effects of the magnetic anisotropy on
the spin dynamics. As discussed above, the magnetic aniso-
tropy of the thermal carriers leads to preferred Mn spin di-
rections that minimize the total Fermi sea energy Eh�S� �Eq.
�5��. Its effects on the Mn spin dynamics can be treated phe-
nomenologically by adding the magnetic field

H�t� = −
�Eh�Ŝ�

�Ŝ
�40�

to Eq. �8�50,51 Such an anisotropy field causes a nonlinear
rotation and relaxation of the Mn spin until it aligns with the

easy axis direction that minimizes Eh�Ŝ�, so that H=0. We
would like to distinguish between the above effect, due to the
thermal carriers, and the anisotropy effects on the photoex-
citation. The latter can be treated microscopically, as dis-
cussed in Sec. III, and can determine the photoexcited hole
spin �see, e.g., Eq. �15��.

In Ga�Mn�As, Kc�0, Ku
0, and �Kc�
Ku.46,47 In this
parameter regime, there are two degenerate ground states,
which correspond to Mn spin pointing at angles � from the x
axis such that cos 2�=Ku / �Kc�. The system can be prepared
so that, prior to the photoexcitation, the Mn spin points along
either one of the above two easy axes. In the absence of
magnetic anisotropy, both these initial conditions would re-
sult in the same Mn spin trajectory. Figures 4�a� and 4�b�
compare the three Mn spin components as a function of time,
starting with Mn spin pointing along the two different

ground state configurations. To make this comparison more
meaningful, in both cases, we chose the x axis of the coor-
dinate system to coincide with the initial magnetization di-
rection. Figure 4 clearly shows that, as the Rabi energy in-
creases, the two initial conditions lead to a different time
evolution, which implies that the two magnetic ground states
can be distinguished. As can be seen by comparing Fig. 4
with Fig. 5, the Mn spin dynamics depends on the hole spin
dephasing, especially as the photoexcitation intensity in-
creases.

The dependence of the Mn spin dynamics on the initial
magnetic state becomes more clear in Figs. 6 and 7, which
plot the Mn spin trajectories for the two initial conditions in
the same coordinate system, whose x axis coincides with the
initial magnetizations. Two different temporal regimes can
be clearly distinguished. The first regime lasts for a time
interval comparable to the pulse duration. Here, the dynam-
ics is governed by the optical pulse intensity, duration, and
helicity, as well as by the ratio �+ /�− and the mixing of the
hole spin states that depend on the magnetic anisotropy. On
the other hand, the magnetic anisotropy field �Eq. �40��, due
to the thermal carriers, plays a very minor role in this initial
temporal regime for sufficiently large Rabi energies that ex-
ceed the anisotropy constants. The trajectories for the differ-
ent initial conditions coincide in this subpicosecond regime,
which gives an ultrafast magnetization tilt determined by the
response to the hole spin photoexcited by the coherent spin
Raman processes described by Eqs. �15� and �37�. As can be
seen by comparing Figs. 6 and 7, the shape of the Mn spin
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trajectories is strongly influenced by the spin and polariza-
tion dephasing.

Figures 6 and 7 show a rather abrupt change in the Mn
spin trajectory at times t��p. At later times, the temporal
evolution is determined by the magnetic anisotropy field
�Eq. �40��. The shape of the trajectory during many picosec-
onds depends critically on the magnetization tilt that devel-
ops during the femtosecond initial stage. If this tilt is suffi-
ciently small, the Mn spin dynamics is described by
linearized equations of motion, expanded around the equilib-
rium spin values that minimize the Fermi sea magnetic en-
ergy Eh�S�. This harmonic oscillation corresponds to zero-
momentum magnon excitations, whose frequency is the
same for the two easy axes. Since the magnitude of the mag-
netization tilt can be controlled by the optical pulse intensity
and duration, we conclude that for sufficiently short pulses
and sufficiently small Rabi energies, d+�p�1, the Mn spin
trajectories are very similar for both initial conditions. They
correspond to magnetization precession around the easy axis
�magnons�. However, with increasing photoexcitation inten-
sity and duration, the deviation from the easy axis due to the
subpicosecond magnetization tilt increases, and eventually
the Mn spin dynamics cannot be described by expanding
Eh�S� around its minimum. Such nonlinearities result in a
complex trajectory, determined by the full nonlinear equa-
tions �Eqs. �8� and �40��, which can differ substantially from
a simple magnon precession. As demonstrated by Figs. 6 and
7, in this nonlinear dynamics regime, the Mn spin trajectories
depend on the initial condition. One can then distinguish
between the different magnetic states, which can provide the

basis for an ultrafast magnetic memory readout scheme with
speed limited only by the optical pulse duration. Such a
scheme would be based on controlling the ultrafast response
of the spin system via the optical pulse intensity, duration,
and helicity. Furthermore, the strong dependence of the tra-
jectory shape on the spin dephasing implies that the valence
band structure and mixing of the hole spin states by the
spin-orbit interaction plays an important role. In the next
section, we interpret our numerical results by deriving from
the full theory an effective Landau–Gilbert-like equation for
the Mn spin after expanding around the adiabatic limit.

VII. INTERPRETATION: LIGHT-INDUCED RELAXATION
AND REORIENTATION

The numerical solution of the full mean field equations,
discussed in the previous section, shows that the hole spin
follows the Mn spin more or less adiabatically. This is due to
the much faster hole spin precession and relaxation as com-
pared to the time-dependent changes in S�t�. To interpret the
full numerical results, we therefore expand around the adia-
batic limit. The derivation presented in Appendix C then
gives a Landau–Gilbert-like43 equation

�tŜ = �1 − �s�
h�Ŝ � H + �s�

hŜ � �Ŝ � H� − �Ŝ � h�t� − �Ŝ

� �Ŝ � h�t�� , �41�

where the effective magnetic fields h �Eq. �37��,
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h�t� =
1

V
�
k

Im hk�t� , �42�

and H �Eq. �40�� are due to the optical excitation and mag-
netic anisotropy, respectively. In the above equation,

� =
���cS + �s�

h + H��
��cS + �s�

h + H��2 + ��
2 , �43�

where H� =H · Ŝ, while

� =
���

��cS + �s�
h + H��2 + ��

2 . �44�

The first two terms on the rhs of Eq. �41� correspond to the
usual Landau–Gilbert description of the Mn spin dynamics
induced by the magnetic anisotropy field H. They are similar
to the results of Refs. 50, 52, and 53 and also include non-
linear corrections. The first term on the rhs describes the Mn
spin rotation around the anisotropy field H. � �Eq. �43��
gives the renormalization of the gyromagnetic ratio by the
magnetic exchange interaction. The second term describes
the Gilbert relaxation of the Mn spin toward the direction of
H, with Gilbert damping coefficient �� �Eq. �44��. The pre-
cise values of � and � in the realistic system depend on the

details of the valence band structure. The relaxation of the
hole spin component parallel to S�t�, s�

h, depends on the two
fields h�t� �nonlinear optical excitation� and H�t� �magnetic
anisotropy�, as described in Appendix D.

The nonlinear optical excitation gives rise to two addi-
tional contributions to the Mn spin equation of motion �Eq.
�41��. These contributions describe the response of the mag-
netization to the effective magnetic field pulse h�t�, which is
generated by the optical excitation via second-order pro-
cesses. The third term on the rhs of Eq. �41� describes a Mn
spin rotation around h�t�, whose magnitude is proportional to
the Gilbert damping coefficient � �Eq. �44�� and therefore
vanishes if ��=0 �hole spin conserved�. The last term de-
scribes a spin relaxation toward h�t�, determined by the ex-
change interaction. The above light-induced rotation and re-
laxation vanish after the decay of the optical pulse and e-h
polarizations.

Equation �41� predicts an extremely fast response of the
spin system, determined by the effective magnetic field pulse
h�t�, whose speed is limited only by the pulse duration. This
result points to a new way of controlling the magnetization
during femtosecond time scales, much shorter than those ac-
complished so far. The last two terms on the rhs of Eq. �41�
demonstrate an ultrafast modification of the effective mag-
netic field H. Equation �41� therefore predicts two regimes of
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time evolution, which can be separated due to their very
different time scales. The initial temporal regime is con-
trolled by the pulsed field h�t� and vanishes soon after the
optical excitation. The second temporal regime is controlled
by the anisotropy field H�t� �Eq. �40��, due to the thermal
Fermi sea, which depends nonlinearly on S�t�.

We now turn to the effective light-induced magnetic field
pulse h�t�. As can be seen from Eq. �41�, in order to trigger
magnetization dynamics, h�t� must have a component per-
pendicular to the ground state Mn spin and the easy axis. The
direction of h�t� is determined by the optical transition selec-
tion rules and by the interband polarizations. Figures 8 and 9
show the three components hx�t�, hy�t�, and hz�t� in the case
of strong spin dephasing �Fig. 8� or uncoupled hole spin
states �Fig. 9�. It is clear by comparing the two figures that
the direction of h�t�, which governs the Mn spin trajectory,
depends on the dephasing. The mostly striking effect of �� is

the development, on the time scale of the optical excitation,
of a large component hz in the direction of optical pulse
propagation. This component is strongly suppressed in the
case of weak dephasing. As can be seen from Eq. �41�, hz
rotates the Mn spin within the x-y plane, in a counterclock-
wise direction, and leads to spin relaxation toward the posi-
tive z axis, i.e., to a magnetization tilt out of the x-y plane.
On the other hand, for ��=0, the Gilbert damping coeffi-
cient vanishes, �=0, which suppresses the light-induced Mn
spin rotation. The only effect of the photoexcitation is then
the relaxation described by the last term of Eq. �41�, which
causes the Mn spin to relax toward the negative y axis �coun-
terclockwise rotation within the x-y plane� since hz�0 in
this case. The above trends are consistent with the full nu-
merical calculation of the mean field equations discussed in
the previous section. In Appendix E, we derive an equation
of motion for h�t� that demonstrates its dependence on the
optical transition selection rules, the hole spin polarization,
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FIG. 8. �Color online� Light-induced effective magnetic field components for pulse durations and Rabi energies as in Fig. 1. 1 /��
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the magnetic exchange interaction, and the hole spin dephas-
ing.

VIII. CONCLUSIONS

In conclusion, we presented a theory of nonlinear spin
dynamics in ferromagnetic semiconductors and demonstrated
the main effects common in all such systems by considering
a single spin-degenerate electron and hole band. Our main
result of relevance to experiments is the existence of two
different temporal regimes of magnetization dynamics. The
initial regime lasts for time scales comparable to the optical
pulse duration. It is governed by magnetization precession
and relaxation around an effective magnetic field pulse gen-
erated by the optical excitation via second-order coherent
nonlinear processes. The second temporal regime is gov-
erned by the magnetic anisotropy due to the thermal carriers.
We showed that the shape of the magnetization trajectory

depends sensitively on the hole spin dephasing, the magnetic
easy axes, the transition matrix elements, and the optical
pulse intensity, duration, and helicity. The latter determine
the magnitude and direction of the ultrafast magnetization tilt
from the magnetic easy axis in response to the photoexcita-
tion of hole spin, which in turn determines the importance of
nonlinear magnetic effects during many picoseconds. To in-
terpret our numerical results, we derived an effective
Landau–Gilbert-like equation of motion. This equation
shows that an effective magnetic field pulse, generated by the
interband optical polarizations via a Raman-like process,
triggers precession and relaxation during femtosecond time
scales. This magnetic field pulse may be thought of as an
ultrafast correction to the anisotropy field. The picture of
ultrafast magnetization dynamics conveyed by our results
and, in particular, the existence of two temporal regimes is
consistent with the recent experimental observation of a
light-induced modification of the magnetic anisotropy field
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FIG. 9. �Color online� Same as Fig. 8 but with ��=0 and T2=330 fs.
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in Ga�Mn�As during femtosecond time scales, induced by
nonthermal high energy carriers.35 A more detailed compari-
son between theory and experiment must be performed in the
future. Our calculations point out the need for further experi-
ments in order to explore the control of the magnetization
trajectory by changing the optical excitation intensity, dura-
tion, central frequency, and helicity. For a complete under-
standing of the magnetization dynamics in ferromagnetic
semiconductors, the role of fluctuations and carrier-spin
correlations,54 the band structure, and disorder must also be
considered.
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APPENDIX A

In this appendix, we derive the relaxation and dephasing
contributions to the hole spin equations of motion. The hole
spin is expressed in the basis of hole spin eigenstates as

skmz
h =

1

2
��ĥ−km↑

† ĥ−km↑	 − �ĥ−km↓
† ĥ−km↓	� , �A1�

skm+
h = skmx

h + iskmy
h = �ĥ−km↑

† ĥ−km↓	 . �A2�

From Eqs. �19� and �20�, we obtain for the corresponding
hole density matrices after using straightforward algebra and

the property ĥ2=0,

�t��ĥ−km⇓
† ĥ−km⇑	�relax = −

��

2
�ĥ−km⇓

† ĥ−km⇑	 . �A3�

By choosing the z axis parallel to the Mn spin and noting the
expression �Eq. �A2��, we obtain Eq. �23� that describes the
dephasing of the hole spin component skm�

h perpendicular to
the Mn spin. Similarly, we obtain from Eqs. �19� and �20�

�t��ĥ−km⇓
† ĥ−km⇓	�relax = − �t��ĥ−km⇑

† ĥ−km⇑	�relax

= ����ĥ−km⇑
† ĥ−km⇑	

− �ĥ−km⇑
† ĥ−km⇓

† ĥ−km⇓ĥ−km⇑	� ,

�A4�

which conserve the total hole population

Nkm
h = �ĥ−km⇓

† ĥ−km⇓	 + �ĥ−km⇑
† ĥ−km⇑	 . �A5�

Using the factorization

�ĥ1
†ĥ2

†ĥ3ĥ4	 = �ĥ1
†ĥ4	�ĥ2

†ĥ3	 − �ĥ1
†ĥ3	�ĥ2

†ĥ4	 �A6�

and the relation �obtained from Eqs. �A1� and �A5��

�ĥ−km�
† ĥ−km�	 = Nkm

h /2 + �skm�
h , �A7�

where �= 	1, we obtain Eq. �24� for the hole spin relax-
ation.

APPENDIX B

In this appendix, we derive the polarization dephasing
�t�Pkmn��relax by using Eqs. �19� and �19�. After straightfor-

ward algebra and using the properties Lkm
† ĥkm�Lkm=0, ĥ2

=0, we obtain after noting that the terms in the summation of
Eq. �19� vanish unless �k�m��= �km�,

��tPkmn��relax = −
��

2
�ĥ−km⇑

† ĥ−km⇑ĥ−km�êkn	

−
��

2
�ĥ−km�êknĥ−km⇓ĥ−km⇓

† 	 . �B1�

We now note the relation between the hole operators with
spin along the z axis of pulse propagation or along the Mn
spin direction,

ĥkm⇑ = ei�/2 cos
�

2
ĥkm↑ + e−i�/2 sin

�

2
ĥkm↓, �B2�

ĥkm⇓ = − ei�/2 sin
�

2
ĥkm↑ + e−i�/2 cos

�

2
ĥkm↓, �B3�

where ��t� and ��t� are the polar coordinates that define the

direction of the Mn spin S�t� and the operators ĥkm↑ and ĥkm↓
create hole states with spin along the z axis. Using Eqs. �B2�
and �B3�, the property ĥ2=0, and the relations S+ /S
=ei� sin � ,Sz /S=cos �, we obtain from Eq. �B1� after
straightforward algebra

��tPkmn↑�relax = − ��
1 − Sz/S
2

�ĥ−km↓
† ĥ−km↓ĥ−km↑êkn↓	

+
S−

2S
�ĥ−km↑

† ĥ−km↓ĥ−km↑êkn↓	�
− ��
1 + Sz/S

2
�ĥ−km↑êkn↓ĥ−km↓ĥ−km↓

† 	

−
S−

2S
�ĥ−km↑êkn↓ĥ−km↓ĥ−km↑

† 	� �B4�

and

��tPkmn↓�relax = − ��
1 + Sz/S
2

�ĥ−km↑
† ĥ−km↑ĥ−km↓êkn↓	

+
S+

2S
�ĥ−km↓

† ĥ−km↑ĥ−km↓êkn↓	�
− ��
1 − Sz/S

2
�ĥ−km↓êkn↓ĥ−km↑ĥ−km↑

† 	

−
S+

2S
�ĥ−km↓êkn↓ĥ−km↑ĥ−km↓

† 	� . �B5�

We now factorize the higher density matrices in the above
equations as follows:

�ĥ1
†ĥ2ĥ3ê	 = �ĥ1

†ĥ2	�ĥ3ê	 − �ĥ1
†ĥ3	�ĥ2ê	 , �B6�
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�ĥ3êĥ2ĥ1
†	 = �ĥ3ê	�ĥ2ĥ1

†	 − �ĥ2ê	�ĥ3ĥ1
†	 . �B7�

We thus obtain that

��tPkmn↑�relax = − ��1 − Sz/S
2

�nkm↓
h Pkmn↑ − skm−

h Pkmn↓�

+
S−

2S
�skm+

h Pkmn↑ − nkm↑
h Pkmn↓�

+
1 + Sz/S

2
�Pkmn↑�1 − nkm↓

h � + Pkmn↓skm−
h �

+
S−

2S
�skm+

h Pkmn↑ + Pkmn↓�1 − nkm↑
h ��� �B8�

and

��tPkmn↓�relax = − ��1 + Sz/S
2

�nkm↑
h Pkmn↓ − skm+

h Pkmn↑�

+
S+

2S
�skm−

h Pkmn↓ − nkm↓
h Pkmn↑�

+
1 − Sz/S

2
�Pkmn↓�1 − nkm↑

h � + Pkmn↑skm+
h �

+
S+

2S
�skm−

h Pkmn↓ + Pkmn↑�1 − nkm↓
h ��� ,

�B9�

where nkm� are the spin-polarized hole populations. After
expressing the latter by using Eq. �A7�, we obtain after some
algebra the polarization dephasing contributions �Eqs. �27�
and �28��.

APPENDIX C

In this appendix, we derive an effective equation of mo-
tion for the Mn spin by expanding around the adiabatic limit.
First, we use the hole spin decomposition �Eq. �21�� into a
component parallel S�t� �sk�

h � and a component perpendicular
to S�t� �sk�

h �. The unadiabatic contribution sk�
h is responsible

for triggering the Mn spin precession. After substituting Eq.
�21� into Eq. �15� and noting that the Mn spin magnitude S
remains constant in time, we obtain

�tsk�
h = �cS � sk�

h + Im hk�t� − sk�
h �tŜ

− Ŝ��tsk�
h + ���sk�

h + mk
h�� − ��sk�

h . �C1�

By projecting out the components parallel and perpendicular

to Ŝ and using the relations S ·�tS=�tS
2 /2=0 and sk�

h ·S=0,
we obtain that

�tsk�
h + ���sk�

h + mk
h� = Im hk��t� + sk�

h · �tŜ �C2�

and

��tsk�
h �� = �cS � sk�

h + Im hk� − ��sk�
h − sk�

h �tŜ .

�C3�

We now focus on the perpendicular component s�
h . We note

from Eq. �8� that the motion of S�t� is characterized by a

precession frequency � determined by the field H and the
mean hole spin �s�

h ,

�Ŝ = � � Ŝ, � = �s�
h − H , �C4�

where

sh =
1

V
�
k

sk
h �C5�

is the mean hole spin. In III-Mn-V semiconductors, this pre-
cession is much slower than the motion of the hole spin s�

h ,
which is characterized by the precession energy �cS and the
relaxation rate ��. When considering the slower Mn spin
dynamics, we can then substitute s�

h by its steady state value
in the frame of reference that rotates with the Mn spin and

Ŝ�t�. The rate of change of any vector A as seen by an ob-
server in the rotating frame, ��tA�rot, is related to the corre-
sponding rate of change in the inertial frame, �tA, by

�tA = ��tA�rot + � � A . �C6�

We thus obtain in the case of the hole spin

�ts�
h = ��ts�

h �rot − H � s�
h . �C7�

Projecting in the direction perpendicular to the Mn spin us-
ing Eq. �22�, we obtain that

��tsk�
h �� = ��ts�

h �rot,� + H�

s�
h � S

S
, �C8�

where we used the vector property

A � �B � C� = �A · C�B − �A · B�C . �C9�

The rotating frame approximation corresponds to neglecting
��ts�

h �rot,�.
To obtain an effective equation of motion for the Mn spin,

we use Eq. �8� for s�
h �S to eliminate the hole spin s�

h ,
defined by Eqs. �C5� and �22�, from Eq. �C3�,

s�
h = Ŝ � �s�

h � Ŝ� =
Ŝ � �tŜ + Ŝ � �H � Ŝ�

�
. �C10�

By summing Eq. �C3� over all momenta, we thus obtain
within the rotating frame approximation after using the defi-
nition �Eq. �42�� that

��cS + �s�
h + H���tŜ = ��cS + H��Ŝ � H + �Ŝ � �h � Ŝ�

+ ��Ŝ � �Ŝ � H − �tŜ� . �C11�

The above nonlinear equation of motion is governed by the
magnetic field H, the effective magnetic field h determined
by the interband e-h polarizations, and the hole spin relax-
ation ���� and dephasing ���� rates. Equation �C11� can be
transformed into an effective time-dependent Landau–
Gilbert-like equation of motion by taking the cross product

of both sides with Ŝ and using the vector property �Eq. �C9��
and the property S ·�tS=0,
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��cS + �s�
h + H���tŜ � Ŝ = ��cS + H��Ŝ � �H � Ŝ� + �h � Ŝ

+ ��Ŝ � H − ���tŜ . �C12�

Substituting the above expression into Eq. �C11�, we obtain
Eq. �41�.

APPENDIX D

In this appendix, we derive the relaxation of the hole spin
component s�

h parallel to the Mn spin S�t�, determined by Eq.
�C2�. We eliminate s�

h from Eq. �C2� by using the property

s�
h ·�tŜ=H ·�tŜ /�, obtained after using the properties �S

��tS� ·�tS=0, S ·�tS=�tS
2=0, and some algebra. We also

eliminate �tS from Eq. �C2� by projecting both sides of Eq.
�41� with H and using the vector property A · �B�C�
=B · �C�A� and the relations H2=H�

2+H�
2 and h ·H=h�H�

+h� ·H�. By summing both sides of Eq. �C2� over all mo-
menta, we finally obtain the equation of motion

�ts�
h + ���s�

h + mh� +
��H�

2 + �H� · h�

��cS + �s�
h + H��2 + ��

2 s�
h

= h� +
���H � h�� − ��cS + H��H� · h�

��cS + �s�
h + H��2 + ��

2 . �D1�

APPENDIX E

In this appendix, we derive the equation of motion that
determines the time evolution of the effective magnetic field

pulse h�t�=E�t�ĥ�t� that governs the initial femtosecond
magnetization reorientation and relaxation. Using the equa-
tions of motion of the interband polarizations �Eqs. �31�,
�32�, �34�, and �33��, we obtain the equation of motion

i�tĥk = �kĥk +
i

2
�k � ĥk +

�kpk

2
+ E�t�Sk, �E1�

where �k and �k were defined by Eqs. �35� and �36�,

pk�t� = �+
*Pk↑

+ �t� + �−
*Pk↓

− �t� �E2�

satisfies the equation of motion

i�tpk = �kpk +
�k · hk

2
− E�t�Nk, �E3�

where

Nk = ���+�2 + ��−�2��1 − �Nk
e + Nk

h�/2�

− ���+�2 − ��−�2��skz
h − skz

e � , �E4�

and

Skx = ���+�2 + ��−�2�skx
h + i���+�2 − ��−�2�sky

h + 2 Re��+�−
*�skx

e

+ 2 Im��+�−
*�sky

e ,

Sky = ���+�2 + ��−�2�sky
h − i���+�2 − ��−�2�skx

h + 2 Re��+�−
*�sky

e

− 2 Im��+�−
*�skx

e ,

Skz = − ���+�2 − ��−�2��1 − �Nk
h + Nk

e�/2�

+ ���+�2 + ��−�2��skz
h − skz

e � . �E5�

We note from the above equations that, in the absence of spin
polarization in the ground state, S=sh=se=0, h�t� points
along the z direction of optical field propagation. On the
other hand, in the presence of spin-polarized holes in the
ground state as in ferromagnetic semiconductors, h develops
additional components determined by sh, the Mn spin and
exchange interaction �k, and by the magnetic anisotropy.
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